Każda wizualizacja powinna opowiadać historię ukrytą w danych

lt. 28, 2017Data-driven, Metryki

Niestety często jest tak, że to my staramy się interpretować dane, opowiadać owe tytułowe historie. Najczęściej plączemy się wtedy, zgadujemy, bardziej lub mniej przypadkowo wprowadzamy w błąd słuchających lub oglądających nas, konfudujemy ich, zamiast pozwolić wykresom jasno i klarownie przedstawić to, co kryje się za danymi. Jednym z aspektów pomagających wizualizacjom mówić, jest właściwe połączenie typu danych ze sposobem ich pokazania.

We wczesnych latach 40tych ubiegłego wieku Stanley Smith Stevens – psycholog pracujący na Harvardzie – stworzył nowe określenia (nominal, ordinal, interval i ratio) dla opisania hierarchii skal pomiarów używanych w psychofizyce i sklasyfikował procedury określające skale, dla których są one dozwolone.
Taksonomia ta przez niektórych statystyków była krytykowana, a przez innych zaadopotowana i stosowana w kolejnych pracach naukowych, a także w praktyce.
Z powodzeniem można ją wykorzystać do określenia najlepszych sposobów wizualizacji danych.

Dane, które chcemy prezentować, mogą być ilościowe lub jakościowe.

Ilościowe dane to:

  • Typ Ratio, czyli dane, na których można przeprowadzić działania arytmetyczne. Mogą to być ceny, ilości sztuk produktów.
  • Typ Interval, czyli dane, które mają wartości, ale nie można przeprowadzić na nich sensownych działań arytmetycznych. Na przykład godziny rozpoczęcia wydarzeń, odczyty prędkości wiatru. W tym przypadku nie ma sensu sumować godzin rozpoczęcia wydarzeń lub odczytów prędkości wiatru, ale można wyznaczyć godzinę najwcześniejszego i najpóźniejszego wydarzenia lub najniższą/najwyższą prędkość.

Jakościowe dane to:

  • Typ Ordinal, czyli dane, które można ułożyć w kolejności, ale nie można określić odległości pomiędzy nimi. Przykładem mogą być rozmiary S, M, L, XL. Spodnie w rozmiarze L w Polsce są większe niż spodnie w rozmiarze L w Chinach, ale nie wiadomo, jaka dokładnie jest to różnica.
  • Typ Nominal, czyli dane, które mają różne wartości, ale nie można ich uporządkować – na przykład rodzaje dyscyplin sportowych: koszykówka, siatkówka, piłka nożna, piłka ręczna.

Do tych klasyfikacji w odpowiedni sposób należy dobrać metody agregacji i wizualizacji. Na przykład dane typu Ordinal powinny być sortowane nie alfabetycznie, ale porządkowo. Takich rekomendacji jest więcej. Spójrzmy na poniższą tabelę.

historie-danych

Pamiętajmy o właściwym wizualizowaniu specyficznych rodzajów danych tak, żeby dobrze opowiedziały historię ukrytą w danych.

buy

Sprzedajesz B2B i walczysz o przetrwanie ?

Dowiedz się, jak w 4 krokach zmienić sprzedaż B2B w czasie COVID-19 i wykorzystać sytuację do zdobycia kolejnych klientów oraz wykończenia konkurencji !

Dołącz do naszego newslettera, żeby otrzymywać informacje o nowościach na naszej stronie i ZA DARMO przeczytać materiał.

Zgoda RODO

Dziękujemy za rejestrację do naszego newslettera !

Share This